27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

EbM/Z - REXX, The Developer's Best Friend

Written by Paul Gallagher

FEELBACK =ELRCH TOF BACKWLRD  FORWARD

Introduction

Whenever I think of REXX, I picture a golden brown Bassett hound. He's always by
my side, panting and slobbering a bit, eager to run around and do some tricks for me.
When I throw a ball, off he scampers, eager to please. His legs are a bit short, but boy
do they pump him along.

Yep, that's m' boy, good ol' REXX. A developer couldn't have a more faithful
companion.

OS/2 provides a tremendous environment for the software developer. I'm sure we all
know that by now! As the toothpaste advertisements go, "OS/2. Recommended by
more software developers than any other operating system".

This article will focus on one feature of OS/2 that can really help improve the way
you build software, perhaps more than any other - REXX. Now, I'm not so much
talking about developing in REXX as using REXX to assist your development in
some other language (which could be REXX however, but could equally be C or
C++).

We're going to do some basic to intermediate REXX scripting which I'll present in
tutorial format. At the end we'll have a few fully functional developer's tools. That's
only half the story though; I intend to take a few detours along the way and get
philosophical about the software development process and developer tools.

I guess I have two audiences in mind. If you are fairly new to REXX, or have never
used it before, then I hope the tutorial nature of the presentation will help you along
the learning curve. Many developers could be reasonably familiar with REXX though.
If you are in this camp, then (if nothing else) I hope I can stimulate your imagination
somewhat, and perhaps encourage you to use REXX for tasks that you wouldn't have
otherwise considered.

The REXX Renaissance

Some Background for Beginners

It seems interest in REXX has never been stronger, and I suspect that's largely thanks
to OS/2 (remember, REXX is available on a wide range of platforms). The Internet
newsgroup "comp.lang.rexx" is lively and EDM/2 is full of reviews of REXX-based
tools. The IBM Employee Written Software (EWS) scheme has provided some great
REXX support; there are now libraries that enable REXX to access a large portion of
the OS/2 API, including networking features.

The key to REXX is its refreshing combination of simplicity and power. It is
particularly strong in handling text strings and patterns. For example, the simple
REXX statement

Parse Var tempstring wordl word2 therest

https://www.edm2.com/0303/rexx.html 1/14


https://www.edm2.com/common/authors/pgallagher.html

27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

will split the contents of the variable "tempstring" into three variables (stored in
"wordl", "word2" and "therest"). Everything in the source string up until the first
space character goes into "word1", the text between the first and second space goes
into "word2" and the remaining characters (if any) get put into "therest". Note also
that our use of the space character as the delimiter is purely arbitrary - it could have
been '#','N' or any other character (or combinations of characters).

REXX is arguably one of the best text processing languages around. It is easier and
more flexible than AWK, quicker and easier to develop than C and other 3GLs, and
more widely supported than some specialist text processing engines (e.g. the DOS
Shareware program "Parse-O-Matic").

Developing software is a complex activity with many aspects. However, when you
consider that producing code, particularly for 3GL languages, is largely a "text
processing" activity, you perhaps get an inkling that REXX may have something to
offer when it comes to helping your software development activities.

Developer Productivity? Me?

Developer productivity - A Personal Issue

Most people reading this article would call themselves software developers, at least to
some extent. Perhaps you are paid to write software; I'm sure many more wish they
were, but only get to write code at home while attending to their other responsibilities
at work.

Any developer, whether working for profit or just for fun, must surely be interested in
being as productive as possible. After all, the more time you save, the more work you
can do (and as we all know, developing in GUI, networked environments usually
takes a lot of work - in terms of lines of code).

Have you ever sat back and made an objective assessment of your "productivity'? If

you're paid to program, then I'm sure your managers make sure that the productivity
issue is always in your face. But are you like me? You have good habits at work and
then everything is out the window when you're sitting at your home computer?

Anyone answer in the affirmative? <grin>

Well, perhaps I'm not that bad (I hope <grin>), but I recognize that I tend to suffer
from another ailment - "DOS-upsized-tunnel-vision". Like many of you, my first
programming experience was under DOS. I am used to having low expectations of the
operating environment. DOS .BAT files can only do so much. To do anything beyond
copying and concatenating files etc, you need to turn to additional tools - tools you
have to find (or buy) yourself. I guess partly in response to the paucity of standard
tools, compiler products tended to come with a lot of functionality built-in (like
Borland's IDE). Even adding Windows to the equation didn't help: it was a boon to the
functionality that the average programmer could build into a program, but Windows
itself didn't help us develop any better (far from it - productivity plummeted).

Now that I've "upsized" to a decent operating environment - OS/2 - I tend to forget
that my development environment doesn't end at the edge of the IDE.

I would suggest that two features of OS/2 - the Workplace shell and REXX - set it
apart from most other operating systems/environments when it comes to the software
development process. The Workplace Shell gives us a powerful space in which to
organize the files and programs that "belong" to a project, and REXX gives us a

https://www.edm2.com/0303/rexx.html

2/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

supremely powerful scripting tool to automate many of the basic activities involved in
setting up and working on a project.

My Scripting Style

This article includes a good half-dozen scripts, but they are all based on the same
basic template. Rather than tediously describe the scripts in full, over and over, I'll
take this opportunity to introduce you REXX scripts a la Paul Gallagher.

Here's the 8-point blueprint I use:

1. Header

This is basically a non-executable section containing comments, description and
version history notes. I generally define three global variables here: programNameStr
(a text description of the script), copyrightStr (appropriate copyright message) and
versionStr (version message). These variables are mainly used in banner messages
and help screens.

You will note a number of cryptic tags (beginning with "***" at around column 35) in
the header - these are actually instructions for the version control software I use
(TLib). They only pop up in a few places so I have not removed them for publication.
(They also let you know that these are real scripts!)

Example:

/% */
'@echo off'
programNameStr=  '"Create new project (example only)"
copyrightStr=  "Copyright (c) Paul Gallagher 1995"

/% skkkeywordsskkx '"Version: %v Date: %d %t''x/
versionStr= "

/%

xrkkeywordsskkk %"
LOCK STATUS "

*rkkeywordsskkk ''%n'

Filename "newproj.cmd"

Platform 0S/2 (REXX)

Authors Paul Gallagher (paulg@resmel.bhp.com.au)
Description

Revision History
*kkrevision—historyskx
xkkrevision—historyskx

e NE wE s NE s NE wE wE o wE s wE wa

’ */

2. Load REXX utility functions [optional]

Next, I load the REXX utility package, if any of the functions will be required by the
script. There tend to be a few schools of thought in relation to loading/unloading
external functions. I prefer to load the entire standard utility package - and not unload
functions at the end of the script. I do this since the load/unload is a global operation -
not limited to the one process.

Example:

https://www.edm2.com/0303/rexx.html

3/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

VES
; Load REXXUTIL
; */

If RxFuncQuery('SysLoadFuncs') <> @ Then
If RxFuncAdd('SysLoadFuncs', 'RexxUtil', 'SysLoadFuncs') <> @ Then Do
Say 'Unable to init REXX Utility function loader.'
Exit
End
Call SysLoadFuncs

3. Install selected error traps

As with any other programming language, it is important to ensure that programs fail
as gracefully as possible as possible when severe errors are encountered. All error
conditions cause program flow to jump to ExitProc - the point from which a
reasonably clean exit can occur.

Example:

/%
; Set error traps
; */

signal on failure name ExitProc
signal on halt name ExitProc
signal on syntax name ExitProc

4. Initial parse of command line [optional]

If the command arguments are of any interest at all, they are initially loaded into a
variable called params. The code that follows does a quick check for anything that
looks like the user is after help - if that is the case, then the HelpInfo procedure is
called prior to jumping to the script exit point.

Example:

/%
; Do initial parse of command line and call help message if required
’ */

/* get the command line arguments */
Parse Arg params
/% call help routine if required */
If POS(TRANSLATE(params),"-?"'00'x"/?"'00'x"-HELP"'00'x"/HELP") > @ Then Do
Call HelpInfo
Signal ExitProc
End

The check for a "help" parameter illustrates a neat trick that is handy for command
parsing. TRANSLATE(params) simply does an uppercase conversion. All of the valid
"help" commands are concatenated as a string with intervening null characters. The
POS function is then used to test whether the parameters passed to the program match
any of the "help" commands. Thus, the parameters "-?", "/?", "/help", "-H", etc. will
all be recognized as calls for help.

5. Main program

This is where the "generic" stuff ends, and the real program starts.

6. General Exit Procedure

https://www.edm2.com/0303/rexx.html

4/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

The main exit point of the script is named ExitProc. Normal execution of the main
program will simply see control flow to this point, but error conditions will generally
see execution jump to this point. Prior to exiting completely, variables are dropped
(mainly to be neat than for any other reason) - but other tasks could be included here
if required.

Example:

/*
; General exit procedure
; */

ExitProc:
Drop params programNameStr copyrightStr versionStr
Exit

7. Standard help procedure

A standard help procedure is provided, and usually enhanced for each individual
script. It is intended to simply display an appropriate message, but other features
could be added if required.

Example:

/%
; routine to display help message
H */

HelpInfo: Procedure Expose programNameStr copyrightStr versionStr
Say
Say le xll
Say " ""programNameStr
Say " "versionStr
Say " "copyrightStr
Say
Say le ’.‘"

Return

8. Additional functions/procedures

The standard template ended at point 7. What follows are all the functions and
procedures written for a specific application.

Coding and documentation standards

In addition to following the blueprint outlined above, the code adheres to some basic
presentation guidelines:

Program blocks indented by 2 characters

Keywords typed in proper case (e.g. "If" or "Select")

Function names typed in uppercase (e.g. "TRANSLATE")

Variables name components in proper case, but name started with lower case
(e.g. "programName")

e All comments that document algorithms are indented by 35 characters (i.e.
comments appear to the right of the page). Comments that precede a procedure
or block of code begin at column 1.

Setting Up Your Development Environment

https://www.edm2.com/0303/rexx.html 5/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

In this section I'll talk about a selection of REXX scripts that can help you setup and
maintain a development environment.

INFICONS.CMD

A great deal of developer information comes packaged as INF files (just like EDM/2).

As always, INF files tend to get scattered all over your disk - and searching for the
right one can be a difficult task since they invariably have 8 character filenames (and
if they come from IBM, the name will probably be particularly cryptic. <grin>)

This is a fairly simple script searches for INF files on your disk. The script takes an

optional parameter to specify the path and/or filemask used in the search for INF files.

By default it will search C: drive, examining all subdirectories for *.INF files. I must
admit that this is not the first script to be written with this purpose in mind - but it's
the only one I know of that assigns the INF's true title to the icon created.

After parsing the command line to determine the appropriate search mask (variable
mask), the main algorithm to search the disk and process files is as follows:

If SysFileTree(mask, 'file', 'FS0') > @ then
/% out of memory message *x/
Say SysGetMessage(8)
Else Do
/% if files found then process */
if file.0>0 Then Do

/% ... create folder for all INFs if it doesn't already exist x/

/* loop through all INFs found */
Do i=1 to file.®

/* ... for each INF, get its title & create icon %/

End
End
Else
/% file not found message */
Say SysGetMessage(2)
End

This is a fairly generic algorithm to search-and-process files that could be used in
other situations.

Workplace Shell icons are created for all INFs found using the SysCreateObject
function. Icons are created in a folder called "INF Files" on the desktop. The
enclosing folder is created with the following command:

Call SysCreateObject "WPFolder", "INF Files", "<WP_DESKTOP>",,
"OBJECTID=<INF_FILES>"

Translated this means that this command creates a WPFolder object on the desktop
called "INF Files" and assigns to it the object ID <INF_FILES>. Note the extra
comma on the first line - this is the method REXX uses to indicate the command
continues on the next line.

INF icons are created with the command:

Call SysCreateObject "WPProgram", title' ['path'l', "<INF_FILES>",,
"EXENAME=VIEW.EXE; PARAMETERS="name" ; STARTUPDIR="path";",, "UPDATE"

where path is the fully qualified path of the INF file, name is the filename, and title is
its true title. Basically, an icon has been created for the VIEW.EXE program which is
passed the INF filename as a parameter and is executed in the INF file's directory.

https://www.edm2.com/0303/rexx.html

6/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

The UPDATE parameter to the SysCreateObject function requests that object
attributes be updated, rather than additional objects created if a duplicate is
encountered. In writing this script I discovered that if a WPProgram object had a
multi-line name, then an object match was never detected and additional objects
always created - something to watch out for.

The INF file's true title is obtained by peeking inside the INF file. The title is a null
terminated string up to 48 characters long, starting at offset 6B(hex). The "peek" is
easily achieved with two lines of code:

Call CHARIN file.i,1,X2D('6B")
Parse Value CHARIN(file.i,,48) with title'00'x

The first line "gobbles" the first 6B characters (Note: file.i is the INF file name). The
next line reads the 48 characters that constitute the title field, and uses the Parse
command to assign all characters up to the first null to the variable "title".

Once we have the INF filename ("name", located in directory "path") and true title
("title"), creating an icon for it requires a simple variation on the SysCreateObject we
have seen already:

Call SysCreateObject "WPProgram", title' ['path'l', "<INF_FILES>",,
"EXENAME=VIEW.EXE; PARAMETERS="name" ; STARTUPDIR="path";",, "UPDATE"

NEWPROJ.CMD

Starting a new programming task or project involves a bit of administration to get you
going. Aside from perhaps cleaning up your desk a bit, emptying the ashtray and so
on, you need to set up an appropriate computing environment (set up a project
directory, check-out some standard libraries etc). I'm here to tell you that REXX can't
help with the first tasks (unfortunately) - but it can certainly help with the later.

As an example, here's what I'll typically do when starting a new C or C++ project:

1. Create a project directory (I'll also create directories for the different target
platforms - DOS, OS/2 etc)

2.T use TLib version control software, so I'll create a project-specific TLib
configuration file, and create a project directory in my TLib archive area.

3. I may use TLib to check out a copy of my (personal) standard library for use in
the project

4. Create a Workplace Shell folder for the project. I'll make this folder a "work
area", and fill it up with some objects: a shadow of the project directory (from
1); an OS/2 Command Line icon with startup directory set to the project
directory; icons for any compilers or tools I intend on using - with startup
directories set to the project directory where appropriate.

5. Copy some program stubs as a starting point for coding.

Phew! I haven't even got started yet, but if I had to do this manually I would already
have wasted a good half an hour. Fortunately it's all pretty mundane stuff - easy to
automate with REXX. Unfortunately, it's also all very idiosyncratic - chances are,
what I've described is similar to what you do, but we'll always have our differences.
For that reason, the NEWPROJ.CMD script I describe here is only an example - it
will need some heavy customization for it to meet you own requirements.

After asking for the name of the new project, NEWPROJ.CMD does two things:
creates some directories (the project's "home" directories); and then some Workplace
Shell objects.

https://www.edm2.com/0303/rexx.html 7/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend
Directories are created using the utility function SysMkDir:

Call SysMkDir prjDir

We could just have easily (but with a speed penalty) invoked the built-in command
'md' (i.e. 'mkdir'):

'md' prjDir

To "personalize" this script, you may wish to create some basic project files at this
stage: customized software configuration files; initialize some project log files etc etc.

The Workplace Shell objects are a bit more interesting. Firstly, the script creates a
folder on the desktop called "REXX - The developer's best friend"; this folder will be
a container for all the individual project folders.

Call SysCreateObject "WPFolder", "REXX - The developer's best friend",,
"<WP_DESKTOP>","0BJECTID=<REXX-TDBF>;"

After creating a project folder (as a workarea, i.e. when this folder is closed, all child
objects are also closed)...

SysCreateObject("WPFolder", n "Project", "<REXX-TDBF>",,
"0BJECTID=<SPRJ-"n">;WORKAREA=YES;","UPDATE")

it is populated with a selection of objects. Firstly, it creates icons for the Borland C++
compilers - OS/2, DOS and Windows version (if you use these products you should
examine the NEWPROJ script for details of the required SysCreateObject
commands). An OS/2 Command Prompt icon is also created, as well as a shadow of
the project directory ("d"; "n" is the project name).

Call SysCreateObject "WPProgram", '"0S/2 Command Prompt", "<SPRJ-'"n">",,
"EXENAME=x; STARTUPDIR="d";","UPDATE"
Call SysCreateShadow d, "<SPRJ-'"n"&t;"

As I have already mentioned, NEWPROJ.CMD is probably of little use as it stands,
but is a good basis on which to build your own "New Project Initiation" script.

STUBS.CMD

Most developers have a pretty clear idea about how they like their source files
organized. You may follow the more common conventions, or use a style of your own.
Either way, you don't want to be typing all the same fluff for each new file created.

The most common solution to this problem is to keep a selection of templates. Rather
than type a header, copyright info and so on - just copy the template and away you go.
Two things could be improved though: you may end up with a clutter of templates,
and the template may still need a bit of tweaking on a case-by-case basis.

STUBS.CMD allows you to automate your use of templates ("stubs"). Running
STUBS first presents the user with a menu from which they can select the template to
be generated. After providing a new filename, the script generates a file based on the
selected template. Of course, being a REXX script it can include all kinds of smarts
when generating the template - such as including a copyright notice with this years
date (instead of the date from when you created the template. <grin>

So far its a good concept - but you may ask how I (as the guy who wrote
STUBS.CMD) know how you want your templates produced. The answer is - I don't!

https://www.edm2.com/0303/rexx.html 8/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

In fact, STUBS.CMD comes as a basic menu shell but contains no actual templates.
The one useful command it provides you (other than "exit") is "modify". Here is the
basic menu structure:

Do Forever
/% display menu x/
Say
Say "Select from the following commands:"

/*FLAG1x DO NOT DELETE THIS LINE - New menu items inserted abovex/
Say " "
Say " MODIFY: add a new template to this file"

Say " EXIT: end processing"
Call CHAROUT ,'> '
Pull Cmd

/* process menu option x/
Select
When ABBREV("EXIT",Cmd) Then
Signal ExitProc
When ABBREV("MODIFY",Cmd) Then
Call AdminMODIFY
/*FLAG2*x DO NOT DELETE THIS LINE - New menu items inserted belowx/
Otherwise
Nop
End
End

As you can see, very simple. A menu is printed, a command is accepted, and then the
command is processed. Using the ABBREV function to examine a command makes
for a very user-friendly interface reminiscent of VMS. (Isn't that an oxymoron?) Users
can type as few or as many letters of a command as they like; insofar as the letters
they have typed match the actual keyword, then the command is recognized.

The MODIFY command allows you to add a new template to STUBS.CMD. You
provide an example file, and the script reads it in, creating the necessary procedures
and code modifications in STUBS.CMD to support the new template type. You will
notice the hard-coded "tags" in the preceding code - these help the script locate the
menu code that requires extending. The code to write the new templates is
encapsulated in procedures which are simply appended to the file.

When adding a new template, you are asked for three bits of information: the filename
of the file to be used as the example template; the keyword to be used as the menu
command; and a description of the template - this is used in the menu display.

To modify STUBS.CMD, you first need to locate the scripts true file name and path.
This is easily done using the "Source" variant of the "Parse" command:

Parse Source . . SourceFile

Next, the SourceFile ("STUBS.CMD") is read into a queue. The queue provides a
temporary storage area prior to writing back a modified STUBS.CMD, and is much
more convenient than messing about with temporary files and so on.

/* read stubs.cmd to queue *x/
Do While LINES(SourceFile) > 0
line = LINEIN(SourceFile)
queue line
End

Once the file has been fully enqueued, write-back begins by first repositioning the file
pointer to the start of the file...

Call LINEOUT SourceFile,,1

https://www.edm2.com/0303/rexx.html

9/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

and then pulling the the source from the queue, writing each line back to file -
inserting the new menu display and processing commands as we go:

Do While QUEUED() > @
Parse Pull line

/* insert new menu item x/
if (POS("/*FLAG1",1line)=1) Then Do
Call LINEOUT SourceFile,' Say " 'key': 'description'"'
End
/* write current line */
Call LINEOUT SourceFile, line

/* insert new menu- processing commands x/
if (POS("/*FLAG2",1line)=1) Then Do
Call LINEOUT SourceFile,' When ABBREV("'key'",Cmd) Then'
Call LINEOUT SourceFile, ' Call Create'key
End
End

After that, the new template-writing procedure is appended to the source file. At its
core, this is a simplified variation of the procedure used in the QUOTE.CMD script to
read the example file and convert it to commands that can re- write the example (see
the section on text filters for more details). In part:

/* insert sample script *x/
pre="Call LINEOUT f,"'"
post=""'"
Do While LINES(sample) > @
line = LINEIN(sample)
new=""
/* replace conflicting quote chars in source line */
Do While POS("'",1line)>0
Parse Var line frag"'"line
new=new''frag""'"'"
End
new=new''line
/% write command to write 'clean' line x/
Call LINEOUT SourceFile,' ‘'pre''new''post
End

In my experience, such self-modifying scripts appear to be quite safe. Although I don't
know the details of the process, I suspect that the REXX command processor reads
and semi-compiles a script before beginning execution (the compiled form of the
script is also stored in extended attributes for re-use). This means a script can safely
read and modify itself without altering the execution path of the current program
Instance.

How to best use STUBS? I suggest that you marshal your most commonly used
templates and put a bit of effort into cleaning them up. Once they've checked out OK,
use the MODIFY command to add them to STUBS.

At this stage, STUBS.CMD will be a self-contained script that can re-create your
original templates on command. You can stop right there, however you may wish to
delve in and customize the template-writing procedures to add extra capabilities.

For example, my personal STUBS.CMD can create C, C++ and REXX templates. I
have converted all hard-coded dates (in the copyright legends for example) to
calculated values so that the templates never go out of date. The C/C++ template
procedures contain other enhancements. For example, after asking for a name stem,
they produce both an include (*.h) and associated source files (*.c or *.cpp). The
source files #include the matching header file.

More Ideas

https://www.edm2.com/0303/rexx.html 10/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

I've already hinted that I use REXX to assist with version and project control activities
(to great effect). In fact, my own variant of the NEWPROJ.CMD script is growing in
scope and capabilities almost daily - it maintains version control configurations,
checks-in/out and updates standard libraries, packages software for distribution and so
on. As you would appreciate, I cannot really present these systems in this article
because they are too specialized and peculiar to my personal development
environment. But there's a lesson in there somewhere: I'm sure that most of you would
be in a similar situation of having unique requirements, and I can only encourage you
to examine what you do and consider whether REXX can give you a hand!

Text Filters

I made the point that REXX is particularly good at text processing, and indeed, it is a
natural choice for implementing a whole raft of "text filter" type utilities.

Text filters are basically programs that read a text file from the standard input stream,
modify or process it in some way (line by line), and write the resultant file to the
standard output stream. This means that the standard operating system pipe and
redirection functions can be used to select input and output files or device handles.
Typical text filter usage is as follows, using the OS/2 SORT.EXE filter as an example:

type c:\config.sys | sort > 1ptl:

The basic filter structure in REXX is a very simple 'Do' loop which reads from the
standard input (using the LINEIN function) until no more lines are available (i.e.
LINES() =0).

/* loop until no lines available at
standard input *x/
Do While LINES() > @
/* read current line %/
line = LINEIN()

/% ... perform some processing */

End

LINE.CMD

This is the good old "print line number x" program (it actually prints line "x" and the
3 lines before and after). Implementing this requires only a few extra lines added to
the basic filter script. Basically, we count lines and only print the ones we want.

TAIL.CMD

Again, an "oldie but a goodie" - print the last x lines of a file. When setting out to
implement this specification, there are two obvious problems: we don't know how
many lines are in the file - until after we've read it; and what's the best way of
buffering the file so that you can come back and process it after you've worked out
which lines to print.

The queue interface in REXX gives us an elegant way of solving these problems. As
we read the source file, we write the lines to a first-in, first-out (FIFO) queue using the
QUEUE keyword. Once we've read x lines, we PULL (discard) a line from the front
of the queue for each new one we add - this way the queue becomes a sliding window
containing the most recently read x lines.

https://www.edm2.com/0303/rexx.html

11/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

Do While LINES() > @
line = LINEIN()
lc=1c+1
/* enqueue the new line x/
Queue line
/* if we already have our quota, also
discard a line from the front of
the queue *x/
If (lc>params) Then
Pull line
End

By the time we get to the end of the file, the queue contains exactly what we need to
print. A simple process:

Do While QUEUED() > @
Parse Pull line
Say line

End

QUOTE.CMD

This script helps you prepare text for inclusion as print statements in C/C++ or REXX
programs. For example, the line
I said "I'm here!"

may be converted to the C statement

printf("I said \"I'm here!\"");

In fact there are four output formats supported:

1. C stdio

printf("I said \"I'm here!\"");

2. C++ iostreams

cout << "I said \"I'm here!\"" << endl;

3.REXX - Say keyword

Say 'I said "I''m here!"'

4. REXX - CHAROUT function

Call LINEOUT f,'I said "I''m here!"'

The QUOTE.CMD script uses the basic text filter model to process the input stream.
Lines are prepared for output using five variables:

1. ("pre") a prefix is prepended to the line
2. ("post") a suffix is appended to the line

3 & Nominated quote characters ("qchar") that appear within the text itself are
4. substituted by a quote character replacement string ("reqchar").

The process of replacing quote characters requires another variable ("qqchar"),
which takes the value of "qchar" in REXX-quoted format (more on that later!)

https://www.edm2.com/0303/rexx.html 12/14



27/08/2025, 16:52

EDM7/2 - REXX, The Developer's Best Friend

So, to produce a C++ iostream compatible output, we define these 5 quantities as
follows:

pre='cout << \"'

post="\" << endl;'

qchar="'""

ggqchar="""'""'"" /* the value of qqchar is
reqchar="\""'

i.e. qchar %/

By using this generic "quoting" model, it is easy to add new variations.

The trickiest part of the procedure (shown below) is the replacement of embedded
quote characters ("qchar") with a substitute string ("reqchar"). If it was to be a simple
character for character replacement, then the TRANSLATE function could have come
in handy, however there are situations where the quote character needs to be replaced
with more than one character. The solution I have chosen is to repeatedly parse the
input line into left and right fragments separated by the first occurrence of the quote
character. The right-hand fragment becomes the subject of the next iteration - this
process continues until the quote character can no longer be found in the remaining
fragment. Because the delimiter between left and right portions is a variable quantity,
we need to construct a command and request REXX to interpret it on the fly - this
allows us to make the delimiter appear as a constant in the Parse template.

Do While LINES() > @
line = LINEIN()
neW=""
/* replace qchar occurrences in source
text with reqchar *x/

Do While POS(qchar,line)>0
cmd = "Parse Var line frag"qqchar"line"
interpret cmd
new=new''frag''reqchar
End
/* tack on any remaining line to new */
new=new''line
/* print the quoted line */
say pre''new''post
End

You may not need the QUOTE.CMD itself - but this example of string substitution
may be of assistance in other scripts you write. Note: I'm not altogether happy with
this approach to string substitution; if anyone has a better suggestion I'd be glad to

hear from them!

More Ideas

I've presented a few generic text filters. It's pretty obvious though that the sky's the
limit when you start considering special purpose filters. Here are some suggestions.

There are quite a few code formatters already available (mostly free) but these may
not do exactly what you want. Perhaps you or the companies you work for have some
special coding requirements. Developing a code formatter can be a fairly involved
process (depending on how deep into the syntax you needed to peek to make the
required modifications), but it would be easier in REXX than C!

Do you need to update copyright notices embedded in source files? If you use a
consistent format, then a REXX script to do the update for you would be trivial.

Are you half way through a project you decide to change your variable or function
naming conventions. If you have many source modules, a quick REXX script may be
the easiest way of implementing the change.

https://www.edm2.com/0303/rexx.html

13/14



27/08/2025, 16:52 EDM7/2 - REXX, The Developer's Best Friend

Conclusion

REXX is a fantastic language for text processing - enormously powerful (yet simple)
features such as the Parse command set it apart from its competitors.

Coupled with the ability to manipulate Workplace Shell objects, REXX clearly has a
lot to offer the developer - not only as a language for coding the end product, but as
I've explored in this article: as a tool for assisting development.

Hopefully the scripts presented - if not immediately useful to you - will give you ideas
for other applications.

APPENDIX: Summary of REXX Scripts Presented

INFICONS.CMD
Invocation: INFICONS [path][filemask]
Example usage:
INFICONS
INFICONS C:\OS2\BOOK
This script will search for INF files on disk, and create icons for them in a
folder called "INF Files". The icons will be named according to the INF file's
true title (not its filename).

LINE.CMD
Invocation:LINE x
Example usage: type file.txt | LINE 50
This script prints the specified line number of a file to the screen, along with the
3 lines immediately before and after.

NEWPROJ.CMD
Invocation: NEWPROIJ

QUOTE.CMD
Invocation: QUOTE [clc++IrexxIrexxf]
Example usage: type file.txt | LINE 50
This script formats lines for inclusion in C/C++ or REXX procedures. The
parameter indicates the formatting system used.

STUBS.CMD
Invocation: STUBS

TAIL.CMD
Invocation: TAIL x
Example usage: type file.txt | TAIL 5
This script prints the last 'x' lines of a text file to the screen.

FEELBACK =ELRCH TOF BACKWLRD  FORWARD

https://www.edm2.com/0303/rexx.html 14/14



